Minimum Imputed-Risk: Unsupervised Discriminative Training for Machine Translation
نویسندگان
چکیده
Discriminative training for machine translation has been well studied in the recent past. A limitation of the work to date is that it relies on the availability of high-quality in-domain bilingual text for supervised training. We present an unsupervised discriminative training framework to incorporate the usually plentiful target-language monolingual data by using a rough “reverse” translation system. Intuitively, our method strives to ensure that probabilistic “round-trip” translation from a targetlanguage sentence to the source-language and back will have low expected loss. Theoretically, this may be justified as (discriminatively) minimizing an imputed empirical risk. Empirically, we demonstrate that augmenting supervised training with unsupervised data improves translation performance over the supervised case for both IWSLT and NIST tasks.
منابع مشابه
Discriminative Training and Variational Decoding in Machine Translation via Novel Algorithms for Weighted Hypergraphs
A hypergraph or “packed forest” is a compact data structure that uses structure-sharing to represent exponentially many trees in polynomial space. A probabilistic/weighted hypergraph also defines a probability (or other weight) for each tree, and can be used to represent the hypothesis space considered (for a given input) by a monolingual parser or a tree-based translation system (e.g., tree to...
متن کاملHope and Fear for Discriminative Training of Statistical Translation Models
In machine translation, discriminative models have almost entirely supplanted the classical noisychannel model, but are standardly trained using a method that is reliable only in low-dimensional spaces. Two strands of research have tried to adapt more scalable discriminative training methods to machine translation: the first uses log-linear probability models and either maximum likelihood or mi...
متن کاملConsiderations in Maximum Mutual Information and Minimum Classi- fication Error training for Statistical Machine Translation
Discriminative training methods are used in statistical machine translation to effectively introduce and combine additional knowledge sources within the translation process. Although these methods are described in the accompanying literature and comparative studies are available for speech recognition, additional considerations are introduced when applying discriminative training to statistical...
متن کاملParallel Corpus Refinement as an Outlier Detection Algorithm
Filtering noisy parallel corpora or removing mistranslations out of training sets can improve the quality of a statistical machine translation. Discriminative methods for filtering the corpora such as a maximum entropy model, need properly labeled training data, which are usually unavailable. Generating all possible sentence pairs (the Cartesian product) to generate labeled data, produces an im...
متن کاملIterative Rule Segmentation under Minimum Description Length for Unsupervised Transduction Grammar Induction
We argue that for purely incremental unsupervised learning of phrasal inversion transduction grammars, a minimum description length driven, iterative top-down rule segmentation approach that is the polar opposite of Saers, Addanki, and Wu’s previous 2012 bottom-up iterative rule chunking model yields significantly better translation accuracy and grammar parsimony. We still aim for unsupervised ...
متن کامل